NMDE
NMDE (Novel modified differential evolution algorithm)
- class DETAlgs.nmde.NMDE(params: NMDEData, db_conn=None, db_auto_write=False)[source]
Bases:
BaseAlg
Links: https://www.sciencedirect.com/science/article/pii/S0898122111000460
References: Dexuan Zou, Haikuan Liu, Liqun Gao, and Steven Li. 2011. A novel modified differential evolution algorithm for constrained optimization problems. Comput. Math. Appl. 61, 6 (March, 2011), 1608–1623. https://doi.org/10.1016/j.camwa.2011.01.029
- run()
- write_results_to_database(results_data)
- class detpy.DETAlgs.data.alg_data.NMDEData(epoch: int = 100, population_size: int = 100, dimension: int = 10, lb: list = <factory>, ub: list = <factory>, mode: detpy.models.enums.optimization.OptimizationType = <OptimizationType.MINIMIZATION: 'minimization'>, boundary_constraints_fun: detpy.models.enums.boundary_constrain.BoundaryFixing = <BoundaryFixing.RANDOM: 'random'>, function: detpy.models.fitness_function.FitnessFunctionBase = None, log_population: bool = False, parallel_processing: Optional[list] = None, delta_f: float = 0.1, delta_cr: float = 0.1, sp: int = 10)[source]
Bases:
BaseData
- boundary_constraints_fun: BoundaryFixing = 'random'
- delta_cr: float = 0.1
- delta_f: float = 0.1
- dimension: int = 10
- epoch: int = 100
- function: FitnessFunctionBase = None
- lb: list
- log_population: bool = False
- mode: OptimizationType = 'minimization'
- parallel_processing: list | None = None
- population_size: int = 100
- sp: int = 10
- ub: list