NMDE

NMDE (Novel modified differential evolution algorithm)

class DETAlgs.nmde.NMDE(params: NMDEData, db_conn=None, db_auto_write=False)[source]

Bases: BaseAlg

Links: https://www.sciencedirect.com/science/article/pii/S0898122111000460

References: Dexuan Zou, Haikuan Liu, Liqun Gao, and Steven Li. 2011. A novel modified differential evolution algorithm for constrained optimization problems. Comput. Math. Appl. 61, 6 (March, 2011), 1608–1623. https://doi.org/10.1016/j.camwa.2011.01.029

next_epoch()[source]
run()
write_results_to_database(results_data)
class detpy.DETAlgs.data.alg_data.NMDEData(epoch: int = 100, population_size: int = 100, dimension: int = 10, lb: list = <factory>, ub: list = <factory>, mode: detpy.models.enums.optimization.OptimizationType = <OptimizationType.MINIMIZATION: 'minimization'>, boundary_constraints_fun: detpy.models.enums.boundary_constrain.BoundaryFixing = <BoundaryFixing.RANDOM: 'random'>, function: detpy.models.fitness_function.FitnessFunctionBase = None, log_population: bool = False, parallel_processing: Optional[list] = None, delta_f: float = 0.1, delta_cr: float = 0.1, sp: int = 10)[source]

Bases: BaseData

boundary_constraints_fun: BoundaryFixing = 'random'
delta_cr: float = 0.1
delta_f: float = 0.1
dimension: int = 10
epoch: int = 100
function: FitnessFunctionBase = None
lb: list
log_population: bool = False
mode: OptimizationType = 'minimization'
parallel_processing: list | None = None
population_size: int = 100
sp: int = 10
ub: list