EMDE
EMDE (Efficient modified differential evolution)
- class DETAlgs.emde.EMDE(params: EMDEData, db_conn=None, db_auto_write=False)[source]
Bases:
BaseAlg
Links: https://link.springer.com/article/10.1007/s13042-015-0479-6
References: Mohamed, A.W. An efficient modified differential evolution algorithm for solving constrained non-linear integer and mixed-integer global optimization problems. Int. J. Mach. Learn. & Cyber. 8, 989–1007 (2017). https://doi.org/10.1007/s13042-015-0479-6
- run()
- write_results_to_database(results_data)
- class detpy.DETAlgs.data.alg_data.EMDEData(epoch: int = 100, population_size: int = 100, dimension: int = 10, lb: list = <factory>, ub: list = <factory>, mode: detpy.models.enums.optimization.OptimizationType = <OptimizationType.MINIMIZATION: 'minimization'>, boundary_constraints_fun: detpy.models.enums.boundary_constrain.BoundaryFixing = <BoundaryFixing.RANDOM: 'random'>, function: detpy.models.fitness_function.FitnessFunctionBase = None, log_population: bool = False, parallel_processing: Optional[list] = None, crossover_rate: float = 0.1)[source]
Bases:
BaseData
- boundary_constraints_fun: BoundaryFixing = 'random'
- crossover_rate: float = 0.1
- dimension: int = 10
- epoch: int = 100
- function: FitnessFunctionBase = None
- lb: list
- log_population: bool = False
- mode: OptimizationType = 'minimization'
- parallel_processing: list | None = None
- population_size: int = 100
- ub: list