DEGL

DEGL (Differential evolution with neighborhood-based mutation)

class DETAlgs.degl.DEGL(params: DEGLData, db_conn=None, db_auto_write=False)[source]

Bases: BaseAlg

Links: https://ieeexplore.ieee.org/document/5089881/

References: S. Das, A. Abraham, U. K. Chakraborty and A. Konar, “Differential Evolution Using a Neighborhood-Based Mutation Operator,” in IEEE Transactions on Evolutionary Computation, vol. 13, no. 3, pp. 526-553, June 2009, doi: 10.1109/TEVC.2008.2009457.

next_epoch()[source]
run()
write_results_to_database(results_data)
class detpy.DETAlgs.data.alg_data.DEGLData(epoch: int = 100, population_size: int = 100, dimension: int = 10, lb: list = <factory>, ub: list = <factory>, mode: detpy.models.enums.optimization.OptimizationType = <OptimizationType.MINIMIZATION: 'minimization'>, boundary_constraints_fun: detpy.models.enums.boundary_constrain.BoundaryFixing = <BoundaryFixing.RANDOM: 'random'>, function: detpy.models.fitness_function.FitnessFunctionBase = None, log_population: bool = False, parallel_processing: Optional[list] = None, mutation_factor: float = 0.1, crossover_rate: float = 0.1, radius: int = 10, weight: float = 0.1)[source]

Bases: BaseData

boundary_constraints_fun: BoundaryFixing = 'random'
crossover_rate: float = 0.1
dimension: int = 10
epoch: int = 100
function: FitnessFunctionBase = None
lb: list
log_population: bool = False
mode: OptimizationType = 'minimization'
mutation_factor: float = 0.1
parallel_processing: list | None = None
population_size: int = 100
radius: int = 10
ub: list
weight: float = 0.1