DETCR
DETCR (Hybrid DE Algorithm With Adaptive Crossover Operator)
- class DETAlgs.detcr.DETCR(params: DETCRData, db_conn=None, db_auto_write=False)[source]
Bases:
BaseAlgDETCR - Hybrid DE Algorithm With Adaptive Crossover Operator
Links: https://ieeexplore.ieee.org/document/5949800
References: Gilberto Reynoso-Meza; Javier Sanchis; Xavier Blasco; Juan M. Herrero, “Hybrid DE algorithm with adaptive crossover operator for solving real-world numerical optimization problems”, 2011 IEEE Congress of Evolutionary Computation (CEC), New Orleans, LA, USA, 2011, doi: 10.1109/CEC.2011.5949800.
- crossing(origin_population: Population, mutated_population: Population, cr_list: List, linear_recombination)[source]
- property nfe: int
Number of function evaluations performed so far.
- run()
- write_results_to_database(results_data)
- class detpy.DETAlgs.data.alg_data.DETCRData(population_size: int = 100, max_nfe: int = 100000, dimension: int = 10, additional_stop_criteria: detpy.models.stop_condition.stop_condition.StopCondition = <detpy.models.stop_condition.never_stop_condition.NeverStopCondition object at 0x7f136577ee40>, lb: list = <factory>, ub: list = <factory>, optimization_type: detpy.models.enums.optimization.OptimizationType = <OptimizationType.MINIMIZATION: 'minimization'>, boundary_constraints_fun: detpy.models.enums.boundary_constrain.BoundaryFixing = <BoundaryFixing.RANDOM: 'random'>, function: detpy.models.fitness_function.FitnessFunctionBase = None, log_population: bool = False, parallel_processing: Optional[list] = None, show_plots: bool = True, number_of_success_crossover_rate: int = 15, lineal_recombination_factor: float = 0.75, gamma_var: int = 3)[source]
Bases:
BaseData- additional_stop_criteria: StopCondition = <detpy.models.stop_condition.never_stop_condition.NeverStopCondition object>
- boundary_constraints_fun: BoundaryFixing = 'random'
- dimension: int = 10
- function: FitnessFunctionBase = None
- gamma_var: int = 3
- lb: list
- lineal_recombination_factor: float = 0.75
- log_population: bool = False
- max_nfe: int = 100000
- number_of_success_crossover_rate: int = 15
- optimization_type: OptimizationType = 'minimization'
- parallel_processing: list | None = None
- population_size: int = 100
- show_plots: bool = True
- triangular_distribution_for_crossover_rate = [0.2, 0.5, 1.0]
- triangular_distribution_for_mutation_factory = [0.3, 0.4, 0.5]
- ub: list