EIDE

EIDE (An efficient improved differential evolution algorithm)

class DETAlgs.eide.EIDE(params: EIDEData, db_conn=None, db_auto_write=False)[source]

Bases: BaseAlg

Links: https://ieeexplore.ieee.org/document/6390324

References: Z. Dexuan and G. Liqun, “An efficient improved differential evolution algorithm,” Proceedings of the 31st Chinese Control Conference, Hefei, China, 2012, pp. 2385-2390.

next_epoch()[source]
run()
write_results_to_database(results_data)
class detpy.DETAlgs.data.alg_data.EIDEData(epoch: int = 100, population_size: int = 100, dimension: int = 10, lb: list = <factory>, ub: list = <factory>, mode: detpy.models.enums.optimization.OptimizationType = <OptimizationType.MINIMIZATION: 'minimization'>, boundary_constraints_fun: detpy.models.enums.boundary_constrain.BoundaryFixing = <BoundaryFixing.RANDOM: 'random'>, function: detpy.models.fitness_function.FitnessFunctionBase = None, log_population: bool = False, parallel_processing: Optional[list] = None, crossover_rate_min: float = 0.1, crossover_rate_max: float = 0.1)[source]

Bases: BaseData

boundary_constraints_fun: BoundaryFixing = 'random'
crossover_rate_max: float = 0.1
crossover_rate_min: float = 0.1
dimension: int = 10
epoch: int = 100
function: FitnessFunctionBase = None
lb: list
log_population: bool = False
mode: OptimizationType = 'minimization'
parallel_processing: list | None = None
population_size: int = 100
ub: list