EIDE
EIDE (An efficient improved differential evolution algorithm)
- class DETAlgs.eide.EIDE(params: EIDEData, db_conn=None, db_auto_write=False)[source]
Bases:
BaseAlg
Links: https://ieeexplore.ieee.org/document/6390324
References: Z. Dexuan and G. Liqun, “An efficient improved differential evolution algorithm,” Proceedings of the 31st Chinese Control Conference, Hefei, China, 2012, pp. 2385-2390.
- run()
- write_results_to_database(results_data)
- class detpy.DETAlgs.data.alg_data.EIDEData(epoch: int = 100, population_size: int = 100, dimension: int = 10, lb: list = <factory>, ub: list = <factory>, mode: detpy.models.enums.optimization.OptimizationType = <OptimizationType.MINIMIZATION: 'minimization'>, boundary_constraints_fun: detpy.models.enums.boundary_constrain.BoundaryFixing = <BoundaryFixing.RANDOM: 'random'>, function: detpy.models.fitness_function.FitnessFunctionBase = None, log_population: bool = False, parallel_processing: Optional[list] = None, crossover_rate_min: float = 0.1, crossover_rate_max: float = 0.1)[source]
Bases:
BaseData
- boundary_constraints_fun: BoundaryFixing = 'random'
- crossover_rate_max: float = 0.1
- crossover_rate_min: float = 0.1
- dimension: int = 10
- epoch: int = 100
- function: FitnessFunctionBase = None
- lb: list
- log_population: bool = False
- mode: OptimizationType = 'minimization'
- parallel_processing: list | None = None
- population_size: int = 100
- ub: list