FIADE
FIADE (Fitness-Adaptive DE) [
- class DETAlgs.fiade.FiADE(params: FiADEData, db_conn=None, db_auto_write=False)[source]
Bases:
BaseAlg
Links: https://www.sciencedirect.com/science/article/abs/pii/S0020025511001381
References: Arnob Ghosh , Swagatam Das , Aritra Chowdhury , Ritwik Giri (2011) An Improved Differential Evolution Algorithm with Fitness-Based Adaptation of the Control Parameters. Volume 181, Issue 18, 15 September 2011, Pages 3749-3765 doi: 10.1016/j.ins.2011.03.010
- run()
- write_results_to_database(results_data)
- class detpy.DETAlgs.data.alg_data.FiADEData(epoch: int = 100, population_size: int = 100, dimension: int = 10, lb: list = <factory>, ub: list = <factory>, mode: detpy.models.enums.optimization.OptimizationType = <OptimizationType.MINIMIZATION: 'minimization'>, boundary_constraints_fun: detpy.models.enums.boundary_constrain.BoundaryFixing = <BoundaryFixing.RANDOM: 'random'>, function: detpy.models.fitness_function.FitnessFunctionBase = None, log_population: bool = False, parallel_processing: Optional[list] = None, mutation_factor: float = 0.5, crossover_rate: float = 0.5, adaptive: bool = True)[source]
Bases:
BaseData
- adaptive: bool = True
- boundary_constraints_fun: BoundaryFixing = 'random'
- crossover_rate: float = 0.5
- dimension: int = 10
- epoch: int = 100
- function: FitnessFunctionBase = None
- lb: list
- log_population: bool = False
- mode: OptimizationType = 'minimization'
- mutation_factor: float = 0.5
- parallel_processing: list | None = None
- population_size: int = 100
- ub: list