Source code for DETAlgs.fiade

from detpy.DETAlgs.base import BaseAlg
from detpy.DETAlgs.methods.methods_fiade import mutation, crossing, selection, adapt_parameters
from detpy.models.enums.boundary_constrain import fix_boundary_constraints
from detpy.DETAlgs.data.alg_data import FiADEData


[docs] class FiADE(BaseAlg): """ FiADE Links: https://www.sciencedirect.com/science/article/abs/pii/S0020025511001381 References: Arnob Ghosh , Swagatam Das , Aritra Chowdhury , Ritwik Giri (2011) An Improved Differential Evolution Algorithm with Fitness-Based Adaptation of the Control Parameters. Volume 181, Issue 18, 15 September 2011, Pages 3749-3765 doi: 10.1016/j.ins.2011.03.010 """ def __init__(self, params: FiADEData, db_conn=None, db_auto_write=False): super().__init__(FiADE.__name__, params, db_conn, db_auto_write) # Initialize mutation factors and crossover rates for the population self.mutation_factors = [[params.mutation_factor, False] for _ in range(params.population_size)] self.crossover_rates = [[params.crossover_rate, False] for _ in range(params.population_size)]
[docs] def next_epoch(self): # Mutation v_pop = mutation(self._pop, self.mutation_factors) # Apply boundary constraints fix_boundary_constraints(v_pop, self.boundary_constraints_fun) # Crossing u_pop = crossing(self._pop, v_pop, self.crossover_rates) # Update values before selection u_pop.update_fitness_values(self._function.eval, self.parallel_processing) # Selection new_pop = selection(self._pop, u_pop, self.mutation_factors, self.crossover_rates) # Adapt parameters based on fitness adapt_parameters(new_pop, self.mutation_factors, self.crossover_rates) # Override population with the newly selected population self._pop = new_pop self._epoch_number += 1