from detpy.DETAlgs.base import BaseAlg
from detpy.DETAlgs.methods.methods_fiade import mutation, crossing, selection, adapt_parameters
from detpy.models.enums.boundary_constrain import fix_boundary_constraints
from detpy.DETAlgs.data.alg_data import FiADEData
[docs]
class FiADE(BaseAlg):
"""
FiADE
Links:
https://www.sciencedirect.com/science/article/abs/pii/S0020025511001381
References:
Arnob Ghosh , Swagatam Das , Aritra Chowdhury , Ritwik Giri (2011)
An Improved Differential Evolution Algorithm with Fitness-Based Adaptation of the Control Parameters.
Volume 181, Issue 18, 15 September 2011, Pages 3749-3765
doi: 10.1016/j.ins.2011.03.010
"""
def __init__(self, params: FiADEData, db_conn=None, db_auto_write=False):
super().__init__(FiADE.__name__, params, db_conn, db_auto_write)
# Initialize mutation factors and crossover rates for the population
self.mutation_factors = [[params.mutation_factor, False] for _ in range(params.population_size)]
self.crossover_rates = [[params.crossover_rate, False] for _ in range(params.population_size)]
[docs]
def next_epoch(self):
# Mutation
v_pop = mutation(self._pop, self.mutation_factors)
# Apply boundary constraints
fix_boundary_constraints(v_pop, self.boundary_constraints_fun)
# Crossing
u_pop = crossing(self._pop, v_pop, self.crossover_rates)
# Update values before selection
u_pop.update_fitness_values(self._function.eval, self.parallel_processing)
# Selection
new_pop = selection(self._pop, u_pop, self.mutation_factors, self.crossover_rates)
# Adapt parameters based on fitness
adapt_parameters(new_pop, self.mutation_factors, self.crossover_rates)
# Override population with the newly selected population
self._pop = new_pop
self._epoch_number += 1