COMDE

COMDE (Constrained optimization based differential evolution)

class DETAlgs.comde.COMDE(params: COMDEData, db_conn=None, db_auto_write=False)[source]

Bases: BaseAlg

Links: https://www.sciencedirect.com/science/article/pii/S0020025512000278

References: Mohamed, A. W., & Sabry, H. Z. (2012). Constrained optimization based on modified differential evolution algorithm. In Information Sciences (Vol. 194, pp. 171–208). Elsevier BV. https://doi.org/10.1016/j.ins.2012.01.008

next_epoch()[source]
run()
write_results_to_database(results_data)
class detpy.DETAlgs.data.alg_data.COMDEData(epoch: int = 100, population_size: int = 100, dimension: int = 10, lb: list = <factory>, ub: list = <factory>, mode: detpy.models.enums.optimization.OptimizationType = <OptimizationType.MINIMIZATION: 'minimization'>, boundary_constraints_fun: detpy.models.enums.boundary_constrain.BoundaryFixing = <BoundaryFixing.RANDOM: 'random'>, function: detpy.models.fitness_function.FitnessFunctionBase = None, log_population: bool = False, parallel_processing: Optional[list] = None, mutation_factor: float = 0.1, crossover_rate: float = 0.1)[source]

Bases: BaseData

boundary_constraints_fun: BoundaryFixing = 'random'
crossover_rate: float = 0.1
dimension: int = 10
epoch: int = 100
function: FitnessFunctionBase = None
lb: list
log_population: bool = False
mode: OptimizationType = 'minimization'
mutation_factor: float = 0.1
parallel_processing: list | None = None
population_size: int = 100
ub: list