Source code for DETAlgs.comde

from detpy.DETAlgs.base import BaseAlg
from detpy.DETAlgs.data.alg_data import COMDEData
from detpy.DETAlgs.methods.methods_comde import calculate_cr, comde_mutation
from detpy.DETAlgs.methods.methods_de import binomial_crossing, selection
from detpy.models.enums.boundary_constrain import fix_boundary_constraints


[docs] class COMDE(BaseAlg): """ COMDE Links: https://www.sciencedirect.com/science/article/pii/S0020025512000278 References: Mohamed, A. W., & Sabry, H. Z. (2012). Constrained optimization based on modified differential evolution algorithm. In Information Sciences (Vol. 194, pp. 171–208). Elsevier BV. https://doi.org/10.1016/j.ins.2012.01.008 """ def __init__(self, params: COMDEData, db_conn=None, db_auto_write=False): super().__init__(COMDE.__name__, params, db_conn, db_auto_write) self.mutation_factor = params.mutation_factor # F self.crossover_rate = params.crossover_rate # Cr
[docs] def next_epoch(self): # Calculate not constant cr depend on generation number cr = calculate_cr(self._epoch_number, self.num_of_epochs) # New population after mutation v_pop = comde_mutation(self._pop) # Apply boundary constrains on population in place fix_boundary_constraints(v_pop, self.boundary_constraints_fun) # New population after crossing u_pop = binomial_crossing(self._pop, v_pop, cr=cr) # Update values before selection u_pop.update_fitness_values(self._function.eval, self.parallel_processing) # Select new population new_pop = selection(self._pop, u_pop) # Override data self._pop = new_pop self._epoch_number += 1