EPSDEwDC

EPSDEwDC (Epsilon Constrained Differential Evolution with Dynamic ε-Level Control)

class DETAlgs.eps_de_w_dc.EPSDEwDC(params: EPSDEwDCData, db_conn=None, db_auto_write=False)[source]

Bases: BaseAlg

EPSDEwDC - Epsilon Constrained Differential Evolution with Dynamic ε-Level Control

Links: https://link.springer.com/chapter/10.1007/978-3-540-68830-3_5

References: Tetsuyuki Takahama, Setsuko Sakai (2008) “Constrained Optimization by ε Constrained Differential Evolution with Dynamic ε-Level Control”, In: Chakraborty, U.K. (eds) Advances in Differential Evolution. Studies in Computational Intelligence, vol 143. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68830-3_5

next_epoch()[source]
property nfe: int

Number of function evaluations performed so far.

run()
write_results_to_database(results_data)
class detpy.DETAlgs.data.alg_data.EPSDEwDCData(population_size: int = 100, max_nfe: int = 100000, dimension: int = 10, additional_stop_criteria: detpy.models.stop_condition.stop_condition.StopCondition = <detpy.models.stop_condition.never_stop_condition.NeverStopCondition object at 0x7f136577ee40>, lb: list = <factory>, ub: list = <factory>, optimization_type: detpy.models.enums.optimization.OptimizationType = <OptimizationType.MINIMIZATION: 'minimization'>, boundary_constraints_fun: detpy.models.enums.boundary_constrain.BoundaryFixing = <BoundaryFixing.RANDOM: 'random'>, function: detpy.models.fitness_function.FitnessFunctionBase = None, log_population: bool = False, parallel_processing: Optional[list] = None, show_plots: bool = True, mutation_factor: float = 0.7, crossover_rate: float = 0.9, penalty_power: int = 2, tolerance_h: float = 0.001, control_generations: int = 150, g_funcs: list[typing.Callable[[list[float]], float]] = <factory>, h_funcs: list[typing.Callable[[list[float]], float]] = <factory>)[source]

Bases: BaseData

additional_stop_criteria: StopCondition = <detpy.models.stop_condition.never_stop_condition.NeverStopCondition object>
boundary_constraints_fun: BoundaryFixing = 'random'
control_generations: int = 150
crossover_rate: float = 0.9
dimension: int = 10
eta = 2
function: FitnessFunctionBase = None
g_funcs: list[Callable[[list[float]], float]]
h_funcs: list[Callable[[list[float]], float]]
lb: list
log_population: bool = False
max_nfe: int = 100000
mutation_factor: float = 0.7
optimization_type: OptimizationType = 'minimization'
parallel_processing: list | None = None
penalty_power: int = 2
population_size: int = 100
show_plots: bool = True
theta = None
tolerance_h: float = 0.001
ub: list