EPSDEwDC
EPSDEwDC (Epsilon Constrained Differential Evolution with Dynamic ε-Level Control)
- class DETAlgs.eps_de_w_dc.EPSDEwDC(params: EPSDEwDCData, db_conn=None, db_auto_write=False)[source]
Bases:
BaseAlgEPSDEwDC - Epsilon Constrained Differential Evolution with Dynamic ε-Level Control
Links: https://link.springer.com/chapter/10.1007/978-3-540-68830-3_5
References: Tetsuyuki Takahama, Setsuko Sakai (2008) “Constrained Optimization by ε Constrained Differential Evolution with Dynamic ε-Level Control”, In: Chakraborty, U.K. (eds) Advances in Differential Evolution. Studies in Computational Intelligence, vol 143. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68830-3_5
- property nfe: int
Number of function evaluations performed so far.
- run()
- write_results_to_database(results_data)
- class detpy.DETAlgs.data.alg_data.EPSDEwDCData(population_size: int = 100, max_nfe: int = 100000, dimension: int = 10, additional_stop_criteria: detpy.models.stop_condition.stop_condition.StopCondition = <detpy.models.stop_condition.never_stop_condition.NeverStopCondition object at 0x7f136577ee40>, lb: list = <factory>, ub: list = <factory>, optimization_type: detpy.models.enums.optimization.OptimizationType = <OptimizationType.MINIMIZATION: 'minimization'>, boundary_constraints_fun: detpy.models.enums.boundary_constrain.BoundaryFixing = <BoundaryFixing.RANDOM: 'random'>, function: detpy.models.fitness_function.FitnessFunctionBase = None, log_population: bool = False, parallel_processing: Optional[list] = None, show_plots: bool = True, mutation_factor: float = 0.7, crossover_rate: float = 0.9, penalty_power: int = 2, tolerance_h: float = 0.001, control_generations: int = 150, g_funcs: list[typing.Callable[[list[float]], float]] = <factory>, h_funcs: list[typing.Callable[[list[float]], float]] = <factory>)[source]
Bases:
BaseData- additional_stop_criteria: StopCondition = <detpy.models.stop_condition.never_stop_condition.NeverStopCondition object>
- boundary_constraints_fun: BoundaryFixing = 'random'
- control_generations: int = 150
- crossover_rate: float = 0.9
- dimension: int = 10
- eta = 2
- function: FitnessFunctionBase = None
- g_funcs: list[Callable[[list[float]], float]]
- h_funcs: list[Callable[[list[float]], float]]
- lb: list
- log_population: bool = False
- max_nfe: int = 100000
- mutation_factor: float = 0.7
- optimization_type: OptimizationType = 'minimization'
- parallel_processing: list | None = None
- penalty_power: int = 2
- population_size: int = 100
- show_plots: bool = True
- theta = None
- tolerance_h: float = 0.001
- ub: list