JADE

JADE (Adaptive differential evolution with optional external archive)

class DETAlgs.jade.JADE(params: JADEData, db_conn=None, db_auto_write=False)[source]

Bases: BaseAlg

Links: https://ieeexplore.ieee.org/document/5208221

References: J. Zhang and A. C. Sanderson, “JADE: Adaptive Differential Evolution With Optional External Archive,” in IEEE Transactions on Evolutionary Computation, vol. 13, no. 5, pp. 945-958, Oct. 2009, doi: 10.1109/TEVC.2009.2014613.

next_epoch()[source]
run()
write_results_to_database(results_data)
class detpy.DETAlgs.data.alg_data.JADEData(epoch: int = 100, population_size: int = 100, dimension: int = 10, lb: list = <factory>, ub: list = <factory>, mode: detpy.models.enums.optimization.OptimizationType = <OptimizationType.MINIMIZATION: 'minimization'>, boundary_constraints_fun: detpy.models.enums.boundary_constrain.BoundaryFixing = <BoundaryFixing.RANDOM: 'random'>, function: detpy.models.fitness_function.FitnessFunctionBase = None, log_population: bool = False, parallel_processing: Optional[list] = None, archive_size: int = 10, mutation_factor_mean: float = 0.1, mutation_factor_std: float = 0.1, crossover_rate_mean: float = 0.1, crossover_rate_std: float = 0.1, crossover_rate_low: float = 0.1, crossover_rate_high: float = 0.1, c: float = 0.1, p: float = 0.1)[source]

Bases: BaseData

archive_size: int = 10
boundary_constraints_fun: BoundaryFixing = 'random'
c: float = 0.1
crossover_rate_high: float = 0.1
crossover_rate_low: float = 0.1
crossover_rate_mean: float = 0.1
crossover_rate_std: float = 0.1
dimension: int = 10
epoch: int = 100
function: FitnessFunctionBase = None
lb: list
log_population: bool = False
mode: OptimizationType = 'minimization'
mutation_factor_mean: float = 0.1
mutation_factor_std: float = 0.1
p: float = 0.1
parallel_processing: list | None = None
population_size: int = 100
ub: list