Source code for DETAlgs.jade

from detpy.DETAlgs.base import BaseAlg
from detpy.DETAlgs.data.alg_data import JADEData
from detpy.DETAlgs.methods.methods_jade import jade_adapt_mutation_factors, jade_binomial_crossing, \
    jade_adapt_crossover_rates, jade_mutation, jade_selection, jade_reduce_archive, draw_norm_dist_within_bounds, \
    draw_cauchy_dist_within_bounds
from detpy.models.enums.boundary_constrain import fix_boundary_constraints


[docs] class JADE(BaseAlg): """ JADE Links: https://ieeexplore.ieee.org/document/5208221 References: J. Zhang and A. C. Sanderson, "JADE: Adaptive Differential Evolution With Optional External Archive," in IEEE Transactions on Evolutionary Computation, vol. 13, no. 5, pp. 945-958, Oct. 2009, doi: 10.1109/TEVC.2009.2014613. """ def __init__(self, params: JADEData, db_conn=None, db_auto_write=False): super().__init__(JADE.__name__, params, db_conn, db_auto_write) self.archive_size = params.archive_size self.archive = [] self.mutation_factor_mean = params.mutation_factor_mean self.mutation_factor_std = params.mutation_factor_std self.mutation_factors = draw_cauchy_dist_within_bounds(self.mutation_factor_mean, self.mutation_factor_std, self.population_size) self.success_mutation_factors = [] self.crossover_rate_mean = params.crossover_rate_mean self.crossover_rate_std = params.crossover_rate_std self.crossover_rate_low = params.crossover_rate_low self.crossover_rate_high = params.crossover_rate_high self.crossover_rates = draw_norm_dist_within_bounds(self.crossover_rate_mean, self.crossover_rate_std, self.crossover_rate_low, self.crossover_rate_high, self.population_size) self.success_crossover_rates = [] self.c = params.c self.p = params.p
[docs] def next_epoch(self): # New population after mutation v_pop = jade_mutation(self._pop, self.mutation_factors, self.p, self.archive) # Apply boundary constrains on population in place fix_boundary_constraints(v_pop, self.boundary_constraints_fun) # New population after crossing u_pop = jade_binomial_crossing(self._pop, v_pop, self.crossover_rates) # Update values before selection u_pop.update_fitness_values(self._function.eval, self.parallel_processing) # Select new population new_pop = jade_selection(self._pop, u_pop, self.mutation_factors, self.crossover_rates, self.success_mutation_factors, self.success_crossover_rates, self.archive) jade_reduce_archive(self.archive, self.archive_size) self.mutation_factors, self.mutation_factor_mean = jade_adapt_mutation_factors(self.c, self.mutation_factor_mean, self.mutation_factor_std, self.population_size, self.success_mutation_factors) self.crossover_rates, self.crossover_rate_mean = jade_adapt_crossover_rates(self.c, self.crossover_rate_mean, self.crossover_rate_std, self.crossover_rate_low, self.crossover_rate_high, self.population_size, self.success_crossover_rates) # Override data self._pop = new_pop self._epoch_number += 1