IDE

IDE (Improved differential evolution)

class DETAlgs.ide.IDE(params: IDEData, db_conn=None, db_auto_write=False)[source]

Bases: BaseAlg

Links: https://www.scirp.org/journal/paperinformation?paperid=96749

References: Ma, J. and Li, H. (2019) Research on Rosenbrock Function Optimization Problem Based on Improved Differential Evolution Algorithm. Journal of Computer and Communications, 7, 107-120. doi: 10.4236/jcc.2019.711008.

next_epoch()[source]
run()
write_results_to_database(results_data)
class detpy.DETAlgs.data.alg_data.IDEData(epoch: int = 100, population_size: int = 100, dimension: int = 10, lb: list = <factory>, ub: list = <factory>, mode: detpy.models.enums.optimization.OptimizationType = <OptimizationType.MINIMIZATION: 'minimization'>, boundary_constraints_fun: detpy.models.enums.boundary_constrain.BoundaryFixing = <BoundaryFixing.RANDOM: 'random'>, function: detpy.models.fitness_function.FitnessFunctionBase = None, log_population: bool = False, parallel_processing: Optional[list] = None)[source]

Bases: BaseData

boundary_constraints_fun: BoundaryFixing = 'random'
dimension: int = 10
epoch: int = 100
function: FitnessFunctionBase = None
lb: list
log_population: bool = False
mode: OptimizationType = 'minimization'
parallel_processing: list | None = None
population_size: int = 100
ub: list