Source code for DETAlgs.nmde

import numpy as np
from detpy.DETAlgs.base import BaseAlg
from detpy.DETAlgs.data.alg_data import NMDEData
from detpy.DETAlgs.methods.methods_nmde import nmde_mutation, nmde_selection, nmde_calculate_fm_crm, \
    nmde_binomial_crossing, nmde_update_f_cr
from detpy.models.enums.boundary_constrain import fix_boundary_constraints


[docs] class NMDE(BaseAlg): """ NMDE Links: https://www.sciencedirect.com/science/article/pii/S0898122111000460 References: Dexuan Zou, Haikuan Liu, Liqun Gao, and Steven Li. 2011. A novel modified differential evolution algorithm for constrained optimization problems. Comput. Math. Appl. 61, 6 (March, 2011), 1608–1623. https://doi.org/10.1016/j.camwa.2011.01.029 """ def __init__(self, params: NMDEData, db_conn=None, db_auto_write=False): super().__init__(NMDE.__name__, params, db_conn, db_auto_write) self.delta_f = params.delta_f self.delta_cr = params.delta_cr self.sp = params.sp self._flags = np.zeros(self.population_size) self._f_arr = np.random.uniform(size=self.population_size, low=0, high=2) self._cr_arr = np.random.uniform(size=self.population_size, low=0, high=1) self._f_set = set() self._cr_set = set()
[docs] def next_epoch(self): delta_f, delta_cr, sp, flags, f_arr, cr_arr, f_set, cr_set = ( self.delta_f, self.delta_cr, self.sp, self._flags, self._f_arr, self._cr_arr, self._f_set, self._cr_set ) # New population after mutation v_pop = nmde_mutation(self._pop, f_arr) # Apply boundary constrains on population in place fix_boundary_constraints(v_pop, self.boundary_constraints_fun) # New population after crossing u_pop = nmde_binomial_crossing(self._pop, v_pop, cr_arr) # Update values before selection u_pop.update_fitness_values(self._function.eval, self.parallel_processing) # Select new population new_pop, better_members_indexes = nmde_selection(self._pop, u_pop) for i in range(self.population_size): if i in better_members_indexes: f_set.add(f_arr[i]) cr_set.add(cr_arr[i]) else: flags[i] += 1 f_m, cr_m = nmde_calculate_fm_crm(f_set, cr_set) for i in range(self.population_size): if flags[i] == sp: if f_set != set() and cr_set != set(): f_arr[i], cr_arr[i] = nmde_update_f_cr(f_m, cr_m, delta_f, delta_cr) else: f_arr[i] = np.random.uniform(low=0, high=2) cr_arr[i] = np.random.uniform(low=0, high=1) flags[i] = 0 # Override data self._pop = new_pop self.delta_f = delta_f self.delta_cr = delta_cr self.sp = sp self._flags = flags self._f_arr = f_arr self._cr_arr = cr_arr self._f_set = set() self._cr_set = set() self._epoch_number += 1