Source code for DETAlgs.sade

import numpy as np
from detpy.DETAlgs.base import BaseAlg
from detpy.DETAlgs.data.alg_data import SADEData
from detpy.DETAlgs.methods.methods_sade import sade_mutation, sade_binomial_crossing, sade_selection
from detpy.models.enums.boundary_constrain import fix_boundary_constraints


[docs] class SADE(BaseAlg): """ SADE Links: https://ieeexplore.ieee.org/abstract/document/4730987 References: Wu Zhi-Feng, Huang Hou-Kuan, Yang Bei and Zhang Ying, "A modified differential evolution algorithm with self-adaptive control parameters," 2008 3rd International Conference on Intelligent System and Knowledge Engineering , Xiamen, 2008, pp. 524-527, doi: 10.1109/ISKE.2008.4730987. """ def __init__(self, params: SADEData, db_conn=None, db_auto_write=False): super().__init__(SADE.__name__, params, db_conn, db_auto_write) # class specific self._f_arr = np.random.uniform(size=self.population_size) self._cr_arr = np.random.uniform(size=self.population_size) self.prob_f = params.prob_f self.prob_cr = params.prob_cr
[docs] def next_epoch(self): f_arr, cr_arr, prob_f, prob_cr = (self._f_arr, self._cr_arr, self.prob_f, self.prob_cr) # New population after mutation v_pop = sade_mutation(self._pop, f_arr) # Apply boundary constrains on population in place fix_boundary_constraints(v_pop, self.boundary_constraints_fun) # New population after crossing u_pop = sade_binomial_crossing(self._pop, v_pop, cr_arr) # Update values before selection u_pop.update_fitness_values(self._function.eval, self.parallel_processing) # Select new population new_pop, f_arr, cr_arr = sade_selection(self._pop, u_pop, f_arr, cr_arr, prob_f, prob_cr) # Override data self._pop = new_pop self._f_arr = f_arr self._cr_arr = cr_arr self.prob_f = prob_f self.prob_cr = prob_cr self._epoch_number += 1