Source code for DETAlgs.opposition_based

from detpy.DETAlgs.base import BaseAlg
from detpy.DETAlgs.data.alg_data import OppBasedData
from detpy.DETAlgs.methods.methods_opposition_based import opp_based_generation_jumping
from detpy.DETAlgs.methods.methods_de import mutation, binomial_crossing, selection
from detpy.models.enums.boundary_constrain import fix_boundary_constraints


[docs] class OppBasedDE(BaseAlg): """ OppBasedDE Links: https://ieeexplore.ieee.org/document/4358759 References: S. Rahnamayan, H. R. Tizhoosh and M. M. A. Salama, "Opposition-Based Differential Evolution," in IEEE Transactions on Evolutionary Computation, vol. 12, no. 1, pp. 64-79, Feb. 2008, doi: 10.1109/TEVC.2007.894200. """ def __init__(self, params: OppBasedData, db_conn=None, db_auto_write=False): super().__init__(OppBasedDE.__name__, params, db_conn, db_auto_write) self.mutation_factor = params.mutation_factor # F self.crossover_rate = params.crossover_rate # Cr self.nfc = 0 # number of function calls self.max_nfc = params.max_nfc self.jumping_rate = params.jumping_rate
[docs] def next_epoch(self): # New population after mutation v_pop = mutation(self._pop, f=self.mutation_factor) # Apply boundary constrains on population in place fix_boundary_constraints(v_pop, self.boundary_constraints_fun) # New population after crossing u_pop = binomial_crossing(self._pop, v_pop, cr=self.crossover_rate) # Update values before selection u_pop.update_fitness_values(self._function.eval) self.nfc += self.population_size # Select new population new_pop = selection(self._pop, u_pop) # Generation jumping if opp_based_generation_jumping(new_pop, self.jumping_rate, self._function.eval): self.nfc += self.population_size # Override data self._pop = new_pop self._epoch_number += 1