Source code for DETAlgs.improved_de

import math
from detpy.DETAlgs.base import BaseAlg
from detpy.DETAlgs.data.alg_data import ImprovedDEData
from detpy.models.enums.boundary_constrain import fix_boundary_constraints
from detpy.DETAlgs.methods.methods_improved_de import mutation, binomial_crossing, selection


[docs] class ImprovedDE(BaseAlg): """ ImprovedDE Links: https://link.springer.com/article/10.1007/s00500-023-09080-1 References: Yifeng Lin · Yuer Yang · Yinyan Zhang Improved differential evolution with dynamic mutation parameters Soft Computing Optimization Published: 17 August 2023 Volume 27, pages 17923–17941, (2023) https://doi.org/10.1007/s00500-023-09080-1 """ def __init__(self, params: ImprovedDEData, db_conn=None, db_auto_write=False): super().__init__(ImprovedDE.__name__, params, db_conn, db_auto_write) self.initial_mutation_factor = params.mutation_factor # Initial F value self.crossover_rate = params.crossover_rate # Cr self.iteration = 0
[docs] def dynamic_mutation_factor(self, iteration): """ Implements dynamic mutation factor based on Scheme 6: FS(k) = 1 - 1 / (1 + exp(-iteration)) """ return 1 - 1 / (1 + math.exp(-iteration))
[docs] def next_epoch(self): dynamic_fs = self.dynamic_mutation_factor(self.iteration) # New population after mutation using dynamic mutation factor v_pop = mutation(self._pop, fs=dynamic_fs) # Apply boundary constraints on population in place fix_boundary_constraints(v_pop, self.boundary_constraints_fun) # New population after crossing u_pop = binomial_crossing(self._pop, v_pop, cr=self.crossover_rate) # Update values before selection u_pop.update_fitness_values(self._function.eval, self.parallel_processing) # Select new population new_pop = selection(self._pop, u_pop) # Override population with the newly selected one self._pop = new_pop # Increment iteration count self.iteration += 1 self._epoch_number += 1