Source code for DETAlgs.de

from detpy.DETAlgs.base import BaseAlg
from detpy.DETAlgs.data.alg_data import DEData
from detpy.DETAlgs.methods.methods_de import mutation, binomial_crossing, selection
from detpy.models.enums.boundary_constrain import fix_boundary_constraints


[docs] class DE(BaseAlg): """ The original version of different evolution Links: https://link.springer.com/article/10.1023/A:1008202821328 References: Storn, R., Price, K. Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces. Journal of Global Optimization 11, 341–359 (1997). https://doi.org/10.1023/A:1008202821328 """ def __init__(self, params: DEData, db_conn=None, db_auto_write=False): super().__init__(DE.__name__, params, db_conn, db_auto_write) self.mutation_factor = params.mutation_factor # F self.crossover_rate = params.crossover_rate # Cr
[docs] def next_epoch(self): # New population after mutation v_pop = mutation(self._pop, f=self.mutation_factor) # Apply boundary constrains on population in place fix_boundary_constraints(v_pop, self.boundary_constraints_fun) # New population after crossing u_pop = binomial_crossing(self._pop, v_pop, cr=self.crossover_rate) # Update values before selection u_pop.update_fitness_values(self._function.eval, self.parallel_processing) # Select new population new_pop = selection(self._pop, u_pop) # Override data self._pop = new_pop self._epoch_number += 1